Hochschild Homology and Global Dimension

نویسنده

  • PETTER ANDREAS BERGH
چکیده

We prove that for certain classes of graded algebras (Koszul, local, cellular), infinite global dimension implies that Hochschild homology does not vanish in high degrees, provided the characteristic of the ground field is zero. Our proof uses Igusa’s formula relating the Euler characteristic of relative cyclic homology to the graded Cartan determinant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild Homology and Truncated Cycles

We study algebras having 2-truncated cycles, and show that these algebras have infinitely many nonzero Hochschild homology groups. Consequently, algebras of finite global dimension have no 2-truncated cycles, and therefore satisfy a higher version of the “no loops conjecture”.

متن کامل

Twisted Hochschild Homology of Quantum Hyperplanes

We calculate the Hochschild dimension of quantum hyperplanes using the twisted Hochschild homology.

متن کامل

2 00 4 Hochschild ( co ) homology dimension ∗

In 1989 Happel conjectured that for a finite-dimensional algebra A over an algebraically closed field k, gl.dim.A < ∞ if and only if hch.dim.A < ∞. Recently Buchweitz-Green-Madsen-Solberg gave a counterexample to Happel’s conjecture. They found a family of pathological algebra Aq for which gl.dim.Aq = ∞ but hch.dim.Aq = 2. These algebras are pathological in many aspects, however their Hochschil...

متن کامل

Dualising Complexes and Twisted Hochschild (co)homology for Noetherian Hopf Algebras

We show that many noetherian Hopf algebras A have a rigid dualising complex R with R = A[d]. Here, d is the injective dimension of the algebra and ν is a certain k-algebra automorphism of A, unique up to an inner automorphism. In honour of the finite dimensional theory which is hereby generalised we call ν the Nakayama automorphism of A. We prove that ν = Sξ, where S is the antipode of A and ξ ...

متن کامل

Koszul and Gorenstein properties for homogeneous algebras

Koszul property was generalized to homogeneous algebras of degree N > 2 in [5], and related to N -complexes in [7]. We show that if the N -homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem [23] to A, i.e., there is a Poincaré duality between Hochschild homology and cohomology of A, as for N = 2. Mathem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008